Premonitory patterns of seismicity months before a large earthquake: five case histories in Southern California.
نویسندگان
چکیده
This article explores the problem of short-term earthquake prediction based on spatio-temporal variations of seismicity. Previous approaches to this problem have used precursory seismicity patterns that precede large earthquakes with "intermediate" lead times of years. Examples include increases of earthquake correlation range and increases of seismic activity. Here, we look for a renormalization of these patterns that would reduce the predictive lead time from years to months. We demonstrate a combination of renormalized patterns that preceded within 1-7 months five large (M > or = 6.4) strike-slip earthquakes in southeastern California since 1960. An algorithm for short-term prediction is formulated. The algorithm is self-adapting to the level of seismicity: it can be transferred without readaptation from earthquake to earthquake and from area to area. Exhaustive retrospective tests show that the algorithm is stable to variations of its adjustable elements. This finding encourages further tests in other regions. The final test, as always, should be advance prediction. The suggested algorithm has a simple qualitative interpretation in terms of deformations around a soon-to-break fault: the blocks surrounding that fault began to move as a whole. A more general interpretation comes from the phenomenon of self-similarity since our premonitory patterns retain their predictive power after renormalization to smaller spatial and temporal scales. The suggested algorithm is designed to provide a short-term approximation to an intermediate-term prediction. It remains unclear whether it could be used independently. It seems worthwhile to explore similar renormalizations for other premonitory seismicity patterns.
منابع مشابه
Short-term earthquake prediction by reverse analysis of lithosphere dynamics
Short-term earthquake prediction, months in advance, is an elusive goal of earth sciences, of great importance for fundamental science and for disaster preparedness. Here, we describe a methodology for short-term prediction named RTP (Reverse Tracing of Precursors). Using this methodology the San Simeon earthquake in Central California (magnitude 6.5, Dec. 22, 2003) and the Tokachi-Oki earthqua...
متن کاملDetecting premonitory seismicity patterns based on critical point dynamics
We test the hypothesis that critical point dynamics precedes strong earthquakes in a region surrounding the future hypocenter. Therefore, we search systematically for regions obeying critical point dynamics in terms of a growing spatial correlation length (GCL). The question of whether or not these spatial patterns are correlated with future seismicity is crucial for the problem of predictabili...
متن کاملWastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California
Fracture and fault zones can channel fluid flow and transmit injection-induced pore pressure changes over large distances (>km), at which seismicity is rarely suspected to be human induced. We use seismicity analysis and hydrogeological models to examine the role of seismically active faults in inducing earthquakes. We analyze a potentially injection-induced earthquake swarm with three events a...
متن کامل. ge o - ph ] 3 0 O ct 2 00 2 Foreshocks and Earthquake Predictability
The observation of foreshocks preceding large earthquakes and the suggestion that foreshocks have specific properties that may be used to distinguish them from other earthquakes have raised the hope that large earthquakes may be predictable. Among proposed anomalous properties are the larger proportion than normal of large versus small foreshocks, the power law acceleration of seismicity rate a...
متن کاملPremonitory spreading of seismicity over the faults’ network in southern California: Precursor Accord
[1] We establish a connection between geometry of the faults’ network in a region and seismicity preceding the strong earthquakes in the intermediate-term timescale of years. Previous studies of observed and computer-simulated seismicity demonstrated that strong earthquakes are preceded in that timescale by the rise of seismic activity in a lower magnitude range. Here, we explore a complementar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 26 شماره
صفحات -
تاریخ انتشار 2002